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A new technique is proposed for the recovery of optical phase from intensity information. The method is
based on the decomposition of the transport-of-intensity equation into a series of Zernike polynomials. An
explicit matrix formula is derived, expressing the Zernike coefficients of the phase as functions of the Zernike
coefficients of the wave-front curvature inside the aperture and the Fourier coefficients of the wave-front
boundary slopes. Analytical expressions are given, as well as a numerical example of the corresponding phase
retrieval matrix. This work lays the basis for an effective algorithm for fast and accurate phase retrieval.

1. INTRODUCTION

The problem of phase retrieval from intensity informa-
tion is of relevance in many areas of science.’? In this
paper we consider the phase retrieval technique based on
the transport-of-intensity equation (TIE) first proposed by
Teague.’>* We are motivated to investigate this problem
as the TIE has been studied in the context of adaptive op-
tics for astronomy®® and the imaging of phase objects in
microscopy.” Related problems have also benefited from
the sorts of approach described here, such as determina-
tion of the aberrations of the eye in ophthalmology,® cor-
recting optics for x-ray sources,’ and the investigation of
aberrations in large optical telescopes.'”

In this paper we are concerned not with the nature
of a specific application but rather with the detailed
mathematical basis for the solution of the TIE. We
concentrate here on solutions in terms of the Zernike
polynomials,'! as these are the natural starting point
for the discussion of the diffraction theory of aberrations
and so are widely used in adaptive optics and other opti-
cal studies.’>~1® Although the details of our discussion
revolve around these polynomials, it is no doubt also pos-
sible to develop closely related approaches with the use of
other orthonormal polynomials, which may be useful in
specific applications.

The TIE is a partial differential equation that directly
relates the phase distribution in the planes orthogonal
to the optical axis to the rate of change of the wave-
front intensity of the beam. The equation forms the ba-
sis of the now widely used wave-front curvature sensing
technique proposed by Roddier and Roddier.>%% Here
we suggest a new approach based on Zernike decompo-
sition of the TIE that we hope will allow phase to be
sensed with improved speed and resolution. We propose
to expand each function involved in the TIE into a se-
ries of Zernike polynomials, thus reducing the boundary-
value problem for the TIE to a system of linear algebraic
equations. Such an approach is effective in the case of
circular apertures with uniform illumination, to which we
confine our present study. The analysis of the structure
of the resulting algebraic system significantly clarifies
the contribution of each particular phase aberration to
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the propagation of the wave-front intensity distribution
in the beam. Furthermore, the reduction of the TIE to
a system of linear equations allows simple and efficient
methods for its solution. Some facts about the algebraic
properties of the TIE with respect to Zernike polynomials
have been reported earlier.!°-'° We give rigorous proofs
for the relevant results, derive some new ones, and bring
them together to present a complete picture of the struc-
ture of the TIE with respect to individual Zernike aber-
rations of the phase.

Our study is based on the calculation of the Laplacian
of Zernike polynomials. These results can be considered
as a logical extension of the work by Noll,'? who calculated
the first-order partial derivatives of Zernike polynomials.
We prove that the only Zernike polynomials with zero
Laplacian are the diagonal ones, i.e., those with radial
degree equal to the azimuthal frequency. We also prove
that the Laplacian of any nondiagonal Zernike polynomial
of radial degree N can be represented as a linear combi-
nation of Zernike polynomials each with radial degree not
exceeding N — 2. Using these results, we derive an ex-
plicit operator formula for the phase solution to the TIE
as a function of Zernike coefficients of the wave-front cur-
vature inside the aperture and the Fourier coefficients of
the wave-front slopes at the boundary. It turns out that,
on account of the stability of the solution to the Neumann
problem for the Poisson equation, this phase solution is
insensitive to small errors in the data of the wave-front
curvature and boundary slopes. Furthermore, the coef-
ficients of the inverse operator do not depend on the ex-
perimental data. Therefore we believe that our approach
lays the basis for a very efficient algorithm for phase re-
trieval by the TIE method.

In Section 2 we review the basics of the phase recon-
struction with the TIE. In Section 3 we develop our new
approach, and we discuss the results in Section 4.

2. TRANSPORT-OF-INTENSITY EQUATION
AND PHASE RETRIEVAL

The underlying idea of phase retrieval with the use of
the TIE is that in the paraxial approximation the evolu-
tion of the intensity distribution in the direction of beam
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propagation is defined mainly by the distribution of the
phase in the planes orthogonal to that direction. There-
fore these phase distributions can be recovered if the
intensity change from one such plane to another is mea-
sured. In this section we recall the basics of the intensity
transport method, as suggested by Teague®* and Roddier
and Roddier.>510

Let us consider the scalar monochromatic electromag-
netic wave with complex amplitude

exp(ikz)u(r) = I'2(r)exp[ikz + ip(r)], (1)

where r = (x, ¥, z). In the paraxial (Fresnel) approxi-
mation with the optical axis parallel to z, the complex
amplitude u(r) satisfies the paraxial equation

(2iko, + Au(x, y,2) =0, (2)

where % is the wave number, 9, = 9/dz, and A = V2 =
9.2 + 9,2 is the two-dimensional Laplacian. If we substi-
tute Eq. (1) into Eq. (2) and separate real and imaginary
parts, we obtain the following pair of equations [provided
that I(r) # 0]:

2k, = —IVo|2 + D(I), 3)
kol = —VI-V¢ — IAS, 4)

where V = (d,, d,) is the gradient operator in a plane and
D(I) = I"Y2A(I'?) is the diffraction term. Equation (4)
is the TIE. It can be used for the reconstruction of the
phase in some area () of a plane (x, y), z = constant,
if the distributions of intensity and its z derivative are
known there.

In this work we will consider only circular domains (),
where R is the radius and T is the boundary of Q. It is
convenient to introduce the polar coordinates (r, #) in the
plane of interest, z = 0. We also restrict our study to the
case of uniform intensity distributions in Q:

I(r,0)=I1,HR —r),
1 t>0
0 t=0

Iy = constant,

Ht) = 5)
The assumption of uniform intensity is widely accepted
in adaptive optics.>4?° Substituting Eqgs. (5) into Eq. (4),
we obtain

—H(R —r)A¢(r,0) + (R —r)d, ¢(R, 6)

= kloilaz-l(r, 0)7 (6)
where 6(r) is the Dirac delta function and 9,¢ is the
phase derivative along the radial direction. Equation (6)

implies that the z derivative of intensity must also contain
a delta-function term at the boundary:

RIg9.1(r, 0) = f(r, ) + (R — r)y(6), )

where the function f is smooth up to the boundary and
¢ is a smooth function on the boundary I'.  Comparing
Egs. (6) and (7), we find that

-Ap=f (8)
inside the circular domain ) and that
9, =1y 9

on the boundary I'.
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Thus, in the case of uniform intensity, the phase can
be obtained as a solution to the Neumann boundary-value
problem (9) for the Poisson equation (8). This approach
was developed by Roddier®® and has an important advan-
tage over the original suggestion of Teague,>* who consid-
ered the Dirichlet boundary conditions ¢ = ¢ on I'.  The
advantage of boundary conditions (9) is in the fact that,
unlike the phase itself, the phase normal derivative at
the boundary can be found from intensity measurements
(7) at this boundary. Hence direct measurements of the
phase boundary values are not necessary.

When one studies a boundary problem for a partial
differential equation, it is always necessary to address
three major questions, namely, those concerning exis-
tence, uniqueness, and stability of solutions. Because
the Neumann problem [Egs. (8) and (9)] is a classi-
cal object of mathematical physics, its properties are
well known.

It is proved in the theory of partial differential equa-
tions that a solution to the problem of Egs. (8) and (9)
exists if and only if the following condition holds?!:

f[ f(r, &)rdrdé + / Yy (O)RdO =0. (10)
Q r
When we substitute for f and ¢, Eq. (10) becomes

2 R 2
k/ [ d.I(r, O)rdrdo = *IOR'/‘ d,¢(R, 0)do,
0 0 0
(11

which is just an expression of conservation of energy; loss
of intensity in a region arises through energy flow across
the boundary of the region. Equation (10) may be used
to check the consistency of acquired intensity data.

The mathematical theory also states?! that the solution
of Egs. (8) and (9) is unique up to a constant, i.e., if ¢ is
a solution, then ¢ + C is also a solution for any constant
C. This arbitrary additive constant is not essential for
the phase reconstruction. A nontrivial fact is that in the
case of uniform intensity (5) and circular domain () the
phase reconstructed by Egs. (8) and (9) is unique (up
to a constant) even in the class of multivalued phase
functions.?? This is important in view of the example
given by Gori et al.,?® which presents essentially different
(multivalued) phase functions corresponding to the same
(nonuniform) three-dimensional intensity distribution in
a wave field.

Finally, we would like to recall that the solution
¢ to Eqgs. (8) and (9) is stable with respect to small
errors in f or ¢, as a result of the boundedness of the
inverse operator.??* Namely, if ¢ and ¢’ are the solu-
tions to Egs. (8) and (9) with the right-hand-side functions
(f, ¢) and (f', ¢'), respectively, with dqo(f, f') < &1 and
dr(i, ') < 82, where dg and dr are the appropriate met-
rics inside ) and on the boundary I', respectively, then
dqg (¢, (;5/) < € and € = €(61, 62) — 0 when 6; + 62 — 0.

Note that, in the approach described above, the
boundary values of the phase normal derivative (0) =
d,¢(R, 0) should be obtained as the coefficient of the
delta function in Eq. (7). In reality, the intensity change
near the boundary always has a finite gradient. If the
intensity is almost uniform in the interior of () and has a
sharp decrease near the boundary, then at the boundary
the first term on the right-hand side of Eq. (4) is much
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larger than the second one, which allows us to write

2.I(R, 0)

2.1(R. 0) 12)

Y(0) = -k
Inside Q the first term on the right-hand side of Eq. (4)
is much smaller than the second one, which gives us the
expression for f:
f(r, 0) = kI, 1o,1(r, 9), r<R. (13)
Thus we have a well-defined boundary-value problem
[Eqgs. (8) and (9)] with the right-hand-side functions f and
¢ obtainable from the measurements of optical intensity
in two closely spaced planes (we need to measure inten-
sity in two planes in order to calculate the derivative 9,1).
We now proceed with the solution of Egs. (8) and (9) by
the method of orthogonal expansions.

3. TRANSPORT-OF-INTENSITY EQUATION
AND ORTHOGONAL POLYNOMIALS

A. Expansion of the Transport-of-Intensity

Equation into Orthogonal Polynomials

In this subsection we briefly outline the scheme of the
orthogonal expansion method of solution of boundary-
value problems for partial differential equations. In the
following subsections we will apply it to the TIE using
Zernike polynomials, though it is possible to implement
this method with any complete set of orthogonal func-
tions. In particular, it may be interesting to consider
the eigenfunctions of the Laplacian in the circle. Our
choice of Zernike polynomials is motivated by their favor-
able properties with respect to the description of phase
aberrations.!!-14

Let {Z;} be a complete set of linearly independent func-
tions in domain (), so that we can expand the phase
¢ and the wave-front curvature f into a series over Z;:
¢ =2¢,Z;, f = fiZ;. Substituting these into the
Poisson equation (8) and using the linearity of the Laplace
operator, we obtain the system of linear algebraic equa-
tions X A;j¢; = fi, where the matrix elements A;; are
the coefficients of the decomposition of —AZ; over Z;:
(=N)Z; = Y A;;Z;. If the system {Z;} is orthonormal
with respect to some scalar product, (Z;, Z;) = §;;, where
8;; is the Kronecker symbol, then A;; = (—AZ;, Z;). If
the matrix [A;;] is singular, i.e., if it maps some of
the Z; or their linear combinations into zero, then the
phase ¢ should be expressed as a sum of two components
(projections), ¢ = ¢©@ + ¢, where ¢© is the projection
of ¢ onto the subspace Ker(—A) spanned by all linear com-
binations of Z; mapped by the Laplacian into zero, and
oV = ¢ — ¢$© is the projection onto the complementary
subspace [Ker(—A)]*.

By definition (—A)¢©@ = 0; hence ¢© cannot be found
from the above system, because Y. A;;¢; = ZAiqu;-l) =f
does not depend on ¢©. However, if the boundary prob-
lem is well posed,?! ¢© can be uniquely found from the
boundary conditions. The matrix [A;;] is always non-
singular (invertible) on the subspace [ Ker(—A)]*; hence
the component ¢ can be obtained by the inversion of this
matrix: ¢§-l) = Y A; !f;. Thus the phase can be re-
constructed as a sum of two components, ¢ = ¢©@ +
¢, with the component ¢ obtained from the wave-
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front curvature and the component ¢© determined from
boundary conditions.

In practice, we must deal with truncated series, which
is equivalent to considering finite-dimensional subspaces
spanned by subsets of the whole system {Z;}. In what
follows, we define such natural subsets and implement
the method of orthogonal expansions with the system of
Zernike polynomials.

B. Zernike Decomposition of the Laplacian
In this subsection we derive the decomposition of the
Laplacian in the spaces Zy of Zernike polynomials with
radial degree not exceeding some integer N. The main
aim is to find the kernel (the polynomials mapped into
zero) and the image (the functions into which Zernike
polynomials are mapped) of the Laplacian in Zy. Such
an analysis is a necessary preliminary step for the phase
reconstruction by the Zernike expansion of the TIE, which
we describe in Subsection 3.C. Examples of the sub-
spaces that we introduce in this subsection can be found
in Table 1.

We recall the definition of Zernike polynomials using a
notation differing from that of Noll'® only by normaliza-
tion constants:

c¢™R™(r)cos(m@) Jjeven,m # 0
Z(r, 0) = 1 cy R (r)sin(m#) jodd,m#0 > (14)
c2R(r) m=0
where 0 =r =1and 0 =6 = 27,
™ =[(2 = Sno)m + 1)/m]2 (15)

are normalization constants (the factor /7 in the denomi-
nator is the only difference from the notation of Noll'?),

(n—m)/2
RMr= D v,
s=0

s (=1)*(n — s)!
Ynm = 41 [(n+m)/2—s]'[(n—m)/2 —s]

(16)

are the radial Zernike polynomials, and n and m must
be positive integers satisfying m = n, n — m even. The
index m is the azimuthal frequency of a given Zernike
polynomial, and »n is its radial degree. The number j is
a convenient mode-ordering index; it may be verified that
in the ordering of Noll'® each valid pair of indices (m, n),
m # 0, corresponds to the pair of consecutive integer
numbers (j, j + 1), where

nn + 1)

5 m, 17)

J=Jjlm,n)=
whereas each pair (0, n) corresponds to only one num-
ber j + 1, j = j(0, n) from Eq. (17) (see Table 1). Impor-
tantly, this ordering has no gaps; i.e., if we consider the
set of all Zernike polynomials with radial degree not ex-
ceeding some integer N, their j indices will constitute the
set Jy = {1, 2, ..., jn} of all consecutive integers from 1
to jn, where

JN=JWIN,N)+1=(N + 1)(N + 2)/2. (18)

The choice (15) of normalization constants makes the sys-
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tem of Zernike polynomials orthonormal with respect to

3| &
e % 2 the standard scalar product:
8a| 3
u:L mk ° 2 1
[Te] Iga E <Zi,Zj>=[0 ]:) Zi(l", H)Zj(r, G)rdrdﬁ = Bij. (19)
QO g
o E Let us introduce the vector space Zy of all linear com-
Ng Ngi g binations of Zernike polynomials with radial degrees not
E exceeding an integer N:
T §| g
T i 5
g8 | <
8a& {| Zy =1 X a;Z;, a; real numbers (20)
ﬂ‘k v& ,: :g JEJIN
) ss /|1
S8 i g, (see the example for N = 5 in Table 1). It follows from
|L L @ Eqgs. (18)—(20) that the dimension dim(Zy) of the space
NS § Zy is equal to jy: dim(Zy) = (N + 1)(N + 2)/2.
R Bt We will also need the subspace DZy spanned by all
I D < . .
ime| & diagonal polynomials from Zy:
im g
N XN DZy —{Ya;Z;:  Z;€Zy, m=n] (1)
$8F 77| A3
. \é :8: 0 g ET (see Table 1). Obviously, dim(DZy) = 2N + 1, as there
o Y gg g are two diagonal Zernike polynomials c}r" sin(nf) and
% o @ @@ E E crr™ cos(nd) for each radial degree n # 0 and one diagonal
F i’ H’ ioo° %E polynomial of zero degree, Z; = ¢y = 7 2. Note the
el ~ > o LI,_O' l; B important equality
Bl & NN ONN| 2
e & oo e E dim(Zy) — dim(DZy) = dim(Zy»), (22)
R s jag 23
% g H § 5 gig which follows directly from the formulas for the dimen-
E = o HERT aav:; sions presented above: (N + 1)(N +2)/2 - (2N + 1) =
3| 2 $§ i | i ™ - INV/2.
w| Bl £ 8 {fivx s.8 Let us consider the restriction (—A)y of the Laplacian
o E w O H Ao g g
ol = SRR g to the finite-dimensional space Zy. One can easily verify
5 < L Iglg %% that the polynomial (—A)Z; has the same form as that of
g oo i i S Z; [see Eqgs. (14)—(16)], with different radial components
& TR AR =8 A AN
w0 o i o o N R*(r) in place of R]*(r):
- NN FOINN =
9 :: D gté >m (- Ss n—2s—2
&= S| 2F 750 = v5Im? = (n — 2s)]. (23)
joo <o B o
g8 §§ gg We denote by Ker[(—A)y] the kernel of the operator
. i NN A - (=A)y, i.e., the set of all functions ¢ € Zy mapped by
@ N 1w g 3 2 (—A)y into zero. We state that the kernel of (—A)x co-
9 o S 23 _%’g incides with the space spanned by the diagonal Zernike
S@m § == | S g olynomials:
56i eei BB 8 Py
© o SO S 6| g
g o o S-”i Ker[(—A)y] = DZy . (24)
H R In other words, the Laplacian of a linear combination of
i = g Zernike polynomials is equal to zero if and only if this lin-
: %§ ear combination contains only the diagonal polynomials.
ia S EE- It is easy to see from Eq. (23) that AZ; = 0 for any diag-
I I B onal polynomial, which implies that Ker[(—A)y] D DZy.
° i % ool The opposite inclusion, i.e., the fact that any function ¢
@' @' “g’ :'} from Zy, such that A¢ = 0, can be expressed as a lin-
o § S S §.~E ear combination of diagonal Zernike polynomials, is less
'L_.’ 'L 'L 23 obvious and is proved in Appendix A.
N Ny NI E Now consider the image space Im[(—A)y] of the opera-
° &< tor (—A)y, i.e., the set into which Zy is mapped by the
g Efn ~ ‘? §n Laplacian: Im[(—A)y]=(—A)Zy. We state that the im-
] ] om o o™ < 3 age of (—A)y coincides with the space spanned by the
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Zernike polynomials with radial degrees not exceeding
N — 2

Im[(-A)y]=Zyn—». (25)

In other words, a function is equal to the Laplacian of a
linear combination of Zernike polynomials with radial de-
grees not exceeding N if and only if it can be expressed
as a linear combination of Zernike polynomials with ra-
dial degrees not exceeding N — 2. To prove Eq. (25), we
note, first, that according to Eq. (23) the Laplacian de-
creases the radial degree of any Zernike polynomial by 2.
It indicates that Im[(—A)y] C Zy_2. A rigorous proof of
this inclusion is given in Appendix B. Second, the di-
mension of the image space of any linear operator is al-
ways equal to the difference between the dimension of the
whole space, where it is defined, and the dimension of its
kernel. In the case of (—A)y we have

dim{Im[(—A)x ]} = dim(Zy) — dim{Ker[(—A)y]}
= dlm(ZN) - dlm(DZN) = dim(ZNfz) 5
(26)

where we used formulas (22) and (24). Thus we see that
the image of (—A)y is a subspace of Zy_», and its dimen-
sion is equal to the dimension of Zy_;. Therefore the
vector subspace Im[(—A)y] is equal to the whole vector
space Zy_o, and Eq. (25) is proved.

Let us denote by UZy the subspace of Zy spanned
by all nondiagonal polynomials (see Table 1). Because of
the orthogonality relations (19), any function ¢ from Zy
can be uniquely represented as a sum of two orthogonal
components:

6 =0+,

In other words, we have the decomposition of the
space Zy into an orthogonal sum of two subspaces:
Zy = DZy © UZy, where ® denotes the orthogonal sum.
Formulas (24) and (25) give us the corresponding decom-
position of the Laplacian:

0 07/DZy 0
(ANEZx =1 _a <UZN>=<ZN_2>’

(e _( O )
or (—A)x ¢(1) fov 2 (28)

)

69 € DZy, ¢V € UZy. (27)

i.e., operator (—A)y maps the diagonal subspace DZy into
zero, and it maps UZy one to one (bijective) on Zy_s.
Hence the restriction of the Laplacian to the subspace of
nondiagonal Zernike polynomials is invertible, and corre-
sponding components of the phase can be uniquely found
from the wave-front curvature. On the other hand, the
diagonal component ¢((2,)) cannot be obtained from the
Poisson equation, and we will need to use the bound-
ary conditions (9) for its determination. The actual al-
gorithm is described in Subsection 3.C.

C. Zernike Decomposition of the Neumann

Problem [Egs. (8) and (9)] and Its Solution

In this subsection we will use the representation (28) of
the Laplacian and the Neumann boundary condition (9) to
derive an algorithm for the unique reconstruction of the
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phase ¢ from the wave-front curvature f and the boundary
slope .

Suppose that the wave-front curvature f obtained
from intensity measurements is approximated by a fi-
nite Zernike sum fyy € Zy/ with some integer N’ (we
have explained in Section 2 that the phase solution is
stable with respect to small errors in f that may occur as
a result of this approximation). We will be looking for a
phase ¢ such that —A¢ = finyy. Let N =N'+ 2. Then
fvy = fv—2) € Zy—2, and, according to Eq. (28), we must
look for the corresponding phase solution in the space
Zy, ie., find the coefficients ¢; in the representation
QS(N)(RP, 0) = ZjEJN ¢ij(p’ 0)7 where P = r/R

We start with the decomposition of the function ¢u) €
Zy in accordance with Eq. (28):

0) (1) (0)
o) = by + dwys oy = 2> ¢;Z;,
JEDIN
1)
by = > $iZ;, (29)
JETIN

where the set DJy contains all indices j from Jy =
{1, 2, ..., jn} corresponding to the diagonal polynomials
Z; and the complementary subset UJy = Jy\ DJy con-
tains all indices corresponding to nondiagonal ones. Ac-
cording to the results of Subsection 3.B, we should be
able to retrieve the nondiagonal component d)&,)) from the
wave-front curvature f(y-2 using the Poisson equation.
Let us decompose f(y—g) into the Zernike terms,

f(N—2)(Rp7 0) = Z fiZi(P’ 0)7 (30)

1EJN-2

and use Eq. (28) to obtain
Y fiZi=fw-2= (—A)N¢((11v)) =(-An X ¢;Z,
JEUJIN

i€EJN-2
:R_Z Z Z (ﬁjAL’jZi. (31)

i€EJN-2 jEUJN

Here Aij = <_AZj, ZL> for all i € JN—Z, J (S UJN, with
the scalar product (-, -) defined in Eq. (19). Note that,
on account of the equality (22) and the definition of the
set UJy, the matrix [A;;] is square with both dimensions
equal to jy-2 = N(N — 1)/2. It is also invertible (non-
singular) because of Eq. (28). As the Zernike polynomi-
als Z; are linearly independent, all coefficients at Z; in
Eq. (31) with the same indices must be equal, which gives
us the following system of linear algebraic equations:

Y Aij¢; =R, 1 EJn-2. (32)
eUJn

J

Solving Eq. (32) for ¢;, we obtain

6, =R* 5 Ajfi,

i€EJN-2

jEUJy, (33)

where [Aﬁl] = [A;;]7! is the inverse matrix [it represents
the operator (—A)y': Zy_o — UZyl.

Thus we have retrieved the nondiagonal component
qS((]lV)) of the phase using Eq. (33), and it remains for us
to find the diagonal component qﬁ((]?,)). We will use the
boundary condition (9) for this purpose. As ¢ belongs
to the space Zy, it contains circular harmonics of the or-
ders m = N. Consequently, its normal derivative at the

boundary, 9,¢w)(R, 0), belongs to the space Fy spanned
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by all circular harmonics with azimuthal frequencies not
exceeding N:

N
Fy = |n(0): 7(0) = no + Zzl[nin sin(m6)

+ nl cos(mﬁ)]} (34)

We assume that the boundary wave-front slope ¢ obtained
from the intensity measurements is approximated by a
finite Fourier sum ) € Fy:

N
Yy (0) = o + Zzl[d/,’n sin(m@) + ¢! cos(m#)].  (35)

Then we can write the boundary condition (9) as

8,¢(N)(R, 9) = w(N)(e). (36)
Obviously, 9,¢nw)(R, 6) = ¢<N (R, 0)+ 09 qS (R 9), and
we can calculate the derivative 9 ¢<1 (R, 0), as the ¢ @
component is already found. Let us introduce the new
function Jv)(0) = Yan(0) — a ¢><N (R, #) and decompose
it into the circular harmonics:

N
P (0) = o + Zzl[lﬁ,’n sin(m@) + ¢ cos(m#)].  (37)

On the other hand, by its definition qﬁ((gf)) is a linear com-
bination of diagonal Zernike polynomials:

¢(N (Rp, 0) = cipo + Z crp™¢,, sin(mb)

+ ¢/ cos(m8)]; (38)

hence its radial derivative can be written as

dr qS(ON))(R, ) =R! % cmm[ ¢!, sin(m0) + ¢! cos(m)].
m=1

(39)

Finally, as arqs{%(R, 0) = «Z(N)(e), we obtain from Egs. (37)
and (39) the following equations for the diagonal coeffi-
cients of the phase:

Rl/;l Rl/;”
/- m "o m
O men” P e

- m=1,2,..
mel?

., N. (40)
Formula (40) gives us the values of Zernlke coefficients
of the diagonal phase component d) @), except the zero
coefficient ¢o. Applying formula (17) with m = n, we
derive that each integer m in Eq. (40) corresponds to a
pair of j indices (j, j + 1) = [m(m + 3)/2, m(m + 3)/2 + 1]
of a pair of diagonal polynomials. Hence, when m runs
through the sequence 1, 2, ..., N, these pairs (j, j + 1)
exhaust the whole set DJy, except the zero-order Zernike
polynomial [note that m starts from unity in Egs. (39)
and (40)].

The last exception has two important consequences.
First, the impossibility of determining the coefficient ¢
means that we can reconstruct the phase only up to an
arbitrary additive constant. This, however, is a well-
known general property of the Neumann problem already
discussed in Section 2. Second, boundary conditions (36)
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cannot be valid [i.e., Eq. (37) cannot be equal to Eq. (39)],
unless , = 0 in Eq. (37). By the conventional formula
for the Fourier coefficients we have the equality

Jio = if%[ ) — 0,6 (R, 6)]d6 = 0 (41)
=9, b o (R, .

Applying Green’s theorem to Eq. (41), we obtain

27

21 1
w00 =R [ [ fov-o(Rp, 00pdpde. 42)

If we substitute the Fourier expansion (35) for ) and
the Zernike expansion (30) for fy—g into Eq. (42), we see
that the integrals of all the components, except the zero-
order ones, are equal to zero because of the orthogonality
of the system of circular harmonics and Zernike polyno-
mials. Thus condition (42) is equivalent to

R
¢o=*ﬁfo, (43)

where ¢ is the zero-order Fourier coefficient of s and [,
is the zero-order Zernike coefficient of f. We can also ob-
tain Eq. (43) from the energy-conservation law, substitut-
ing the Fourier expansion for ¢ and the Zernike expansion
for f in Eq. (10). Therefore Eq. (43) and hence Eq. (41)
are always true.

Thus our reconstruction algorithm allows the unique
retrieval by means of formulas (33) and (40) of all phase
aberrations with radial degree not exceeding N, except
the piston mode. In Subsection 3.D we will derive an
explicit matrix formula corresponding to this algorithm,
which expresses the reconstructed phase as a function
of Zernike coefficients of the wave-front curvature f and
Fourier coefficients of the boundary slope .

D. Phase Retrieval Matrix

We consider the operator Ay defined by the Laplacian and
the Neumann boundary condition in the space Zy, Ay =
{(=A)n, By}, with (B¢)(0) = 9,¢ (R, 0), and write the ana-
log of decomposition (28) for it:

AT B B DZy Fy
vENTlo —a\Uzy) T \Zyo) (“44)
or
© B ©
A o) | By, Bw |[ %
Nl o | — 0 —A 1
dw) B ™ |\ P
By b + B )
= = > (45)
A fw-2)
where B((g,)): DZy — Fy and B(%: UZy — Fy are the

restrictions of the boundary operator (B¢)(0) = 9,6 (R, 0)
to the corresponding subspaces. Let us also introduce
the spaces Fy) and DZy, obtained from Fy, and DZy),
respectively, by the removal of the zero-order (constant)
component and deﬁne the corresponding operators: B(N

DZy — Fy and B(N UZy — Fy. We must remove the
zero-order component to make the operator Ay invertible
according to Subsection 3.C. Let us rewrite Eq. (45) in
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the Zernike and Fourier spaces without constant compo-
nents:

7(0) 50 ) 50
Ay ¢(N _ B((J?i) B((Ill) b
b A
30) 70 AL (1) 7
_ (B dw) t Bayda | _ ( Yav) ) (46)
~Adi, fav-2)

Now one can easily find the inverse operator Ay' by ma-
trix algebra:

Al BRI —[BW] 'Ba—Am] ™
N 0 [—Am]!

DZy
o), a

L
N
= 2
[\
N————
II

_ (1B an — B By [— A ] v |
(A ] Yfw-2
(48)

Formula (48) is an operator representation of the recon-
struction algorithm described in Subsection 3.C. Each
term in Eq. (48) has already been defined. Operator
[-Am] ! is defined in Eq. (33). It is represented by
the matrix R2A ﬂl applied to the vector of Zernike coeffi-
cients of fy-2. Operator [B N)] 1 is defined in Eq. (40).
Its action on a function ¢, from Fy, is equ1valent
to the multiplication of its Fourier coefficients i/, "
by the constants R/mc. Operator B((le) is the restric-
tion of the boundary operator (B¢)(0) = 9,¢(R, 0), B(N)

UZy — Fy. The inversion (48) admits a generalization
onto the infinite-dimensional case,?* but we will not need
it in this paper.

Thus we have obtained the explicit formula (48) for the
operator Ay', which maps each pair {¢), f(v_2} of the
wave-front curvature f(y—2 € Zy—2 and boundary slope
Yv) € Fy onto the unlque (up to an additive constant)
phase solution ¢uy) = qS N) + ¢ ]1\,) € Zy such that

AQS(N) = f(N 2) and d (]5 (R 0) = lﬁ (0) Formula
(48) is the central result of the present paper.

Now we will give the analytical form for the ma-
trix formulas (46)—(48) convenient for applications and
present a numerical example for N = 4. Let us start
from the matrix Ay:

~ A Ap R'BY RB
Ay = - 4 Z BT
N |: 0 A22:| |: 0 R72Aij ( )

In Eq. (49) A;; = R~ 1B,J is a square 2N X 2N matrix,
and A;s = R~ IBU) is a rectangular 2N X (N — 1)N/2

matrix with elements

2
R'B, =(BZ,, F)yr =R f (3,Z,)(1, O)F(6)d6, (50)
0
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where

i .
c cos(E 0) 1 even
1 v e=1/Jm, (B

0) i odd

wherei=1, 2, ..., 2N, j € DJy\{1} for Bf?), and j € UJy

for BU) Usmg Eq. (50) and the definition (14)—(16) of
the Zernike polynomials, we obtain
R'BY = R 'mclsu,
i=1,2,...,2N, jeDJy\{1}, m =m(j), ((52)
R'By =R '0;8s, i=1,2,...,2N,j€ Uy,
(53)
2m(j) — 1 i odd
m(J) Jodd (54)

2m( j) J even

where o; = c™ Z(” m)/2 ¥5 m(n — 2s) [see Egs. (15) and (16)
for the deﬁn1t10n of the coefficients c; and v; 1, 8 is the
Kronecker symbol, and m(j) is the azimuthal frequency
of Z;. Theblock Ag; = R72A;; is the (N — 1)N/2 X (N —
1)N/2 square matrix with elements

RN =(-AZ;, Z;)
2 R
=f / (=A)Zj(r/R, 6)Z;(r/R, 0)rdrdé, (55)
o Jo

where i € Jy_5 and j € UJy. The following formula is
derived from the definition (14)—(16) of Zernike polyno-
mials and formula (23) for the Laplacian of Zernike poly-
nomials:

(n'-m)2 (n—m)/2

Aij = Spm2(n + D + D2 S S gy

s'=0 s=0
m? — (n — 2s)?
)
n'+n—2s —2s

(56)

where i € Jy_3, j € Udy, j = jim, n), and i = j(m/, n’'),
as in Eq. (17), and the coefficients vy}, are defined in
Eq. (16). Note that although formulas (52), (53), and (56)
give explicit analytical expressions for the elements of
the matrix A(y), it is sometimes more convenient to use
formulas (50) and (55) for the practical calculations. In
Table 2 we present an example of matrix A o) for N = 4.
The inverse matrix A(N) consists of the blocks

il Al A R[BT1
N 0 Ay 0

In Eq. (57) Aif is a square 2N X 2N matrix, Ajy is
a rectangular 2N X (N — 1)N/2 matrix, and Ay is an
(N —1N/2 X (N — 1N /2 square matrix. In order to
obtain the elements of A ()» one needs to find only the in-
verse matrices A;;' = (A;;)! and [BL ¥ "1"1.  The elements
of these inverse matrices can be easily calculated:

~RABTUBIAG |
RZAﬁ

(57)



Gureyev et al.

Vol. 12, No. 9/September 1995/J. Opt. Soc. Am. A 1939

Table 2. Matrix Ay for R = 1¢

J
i 2 3 5 6 9 10 14 15 4 7 8 11 12 13
1 0 2 0 0 0 0 0 0 0 142 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 14v2 0 0 0
3 0 0 2/6 0 0 0 0 0 0 0 0 0 0 1010
4 0 0 0 246 0 0 0 0 0 0 0 0 104/10 0
5 0 0 0 0 62 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 62 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 410 0 0 0 0 0 0
8 0 0 0 0 0 0 4/10 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 -83 0 0 -245 0 0
2 0 0 0 0 0 0 0 0 0 0 —24./2 0 0 0
3 0 0 0 0 0 0 0 0 0 —24+/2 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 -1615 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 -1615
6 0 0 0 0 0 0 0 0 0 0 0 0 -16/15 0
?The rules separate the blocks A,,. The indexing system is described in the text [formulas (49) and (52)—(56)].
Table 3. Phase Retrieval Matrix A(}} for R = 1¢
i
j 1 2 3 4 5 6 7 8 1 2 3 4 5 6
2 0 1/2 0 0 0 0 0 0 0 7/24 0 0 0 0
31/2 0 0 0 0 0 0 0 0 0 7/24 0 0 0
50 0 1/(2V6) 0 0 0 0 0 0 0 0 0 5/48 0
6 0 O 0 1/(2\/6) 0 0 0 0 0 0 0 0 0 5/48
90 O 0 0 1/(6v2) 0 0 0 0 0 0 0 0 0
10 0 O 0 0 0 1/(6\/5) 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 1/(44/10) 0 0 0 0 0 0
150 O 0 0 0 0 1/(44/10) 0 0 0 0 0 0 0
40 O 0 0 0 0 0 0 —1/(8V3) 0 0 1/16 0 0
70 0 0 0 0 0 0 0 0 0 - 1/(24\/5) 0 0 0
80 O 0 0 0 0 0 0 0 - 1/(24\/5) 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 —1/(16/15) 0 0 -
12 0 0 0 0 0 0 0 0 0 0 0 0 0 —-1/(1615)
130 0 0 0 0 0 0 0 0 0 0 0 -1/(16V15) 0
%The rules separate the blocks A;(}. The first 14 nonconstant Zernike aberrations (j = 2, 3, ..., 15) of a phase can be retrieved by the application

of this matrix to the vector {¢4), f(2)} of the Fourier coefficients of the boundary slope and the Zernike coefficients of the curvature of the wave front.

The indexing system is described in the text [formulas (57)—(60)].

(A1D)ji = R8y/mceyy,

i=1,2, ...,2N, j € DIy\{1}, m = m(j), (58)
(AEQI)ﬂ = Rz(*l)iJrjMij/det A, l e JNfg, ] c UJN,
(59)

where det A is the determinant of the (N — 1)N/2 X (N —
1)N/2 matrix A;; with the elements defined in Eq. (56)
and M;; is the determinant of the matrix obtained from
A;; by removing the ith row and the jth column. Thus
we defined all the elements of the diagonal blocks Aif
and Ay;. The elements of the nondiagonal block Als
can now be obtained according to the rules of matrix
multiplication:

(A = ~R*Y. ;A;bjkB;i})(A;;)u,
JE DJy\{1},i € In_a. (60)

Formulas (58)-(60) give explicit analytical expressions
for the elements of the matrix Ay'; however, in practice,

it may be easier to obtain the whole matrix Ay, by the
matrix inversion of Ay).

The phase ¢w) € Z) is retrieved by the direct mul-
tiplication of this matrix Ay' and the vector gw) =
{¥wv)> fav—2)} of the Fourier coefficients of boundary slopes
J(N) € Fy and the Zernike coefficients of the wave-front

curvature f(y-g € Zy-_sg:
bav) }( Yav ) 61)
f(N—Z)

(f(NN-m) B [

As can be seen from Eqgs. (57)-(60), the phase retrieval
matrix A(}\}) does not depend on experimental data and
can be calculated for a given N once and for all with arbi-
trary precision. In fact, using algebraic, rather than nu-
merical, calculations with the help of such mathematical
software as, for example, MATHEMATICA, one can calculate
the matrix A(}\}) with absolute precision. We performed
this algebraic calculation for N = 4, with the result pre-
sented in Table 3.

7(0)
D)

(1)
D)

Al Ay
0 Ay

A-1
N
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It is worth noting that the matrix in Table 3 is very
sparse and that the values of its nonzero elements are
decreasing as the matrix indices increase. This indi-
cates that the retrieval of phase with this matrix should
be quite stable. We still expect larger errors in the re-
trieval of the diagonal (with m = n) Zernike aberrations
compared with those arising from the nondiagonal terms
(with m # n), because of the necessity to distinguish
the contribution of the wave-front boundary slopes from
that of the wave-front curvature. As can be seen from
Eq. (61), if the uncertainties in ¢y, are greater than the
uncertainties in f(y_g), then the uncertainty i 1n the recon-
struction of the diagonal phase component qS(N will also
be greater than that in the nondiagonal component ¢y,
as the latter depends only on the wave-front curvature
fv—2). A full discussion of the stability phase retrieval
with this approach is beyond the scope of the present
paper, and a thorough study of stability is currently
under way.

4. SUMMARY

In this paper we have examined the solution of the
transport-of-intensity equation (TIE) from the perspective
of a Zernike polynomial decomposition. We have found
a direct matrix relationship between a Zernike polyno-
mial decomposition of the intensity derivative and the
Zernike decomposition of the phase. This relationship
gives a precise description of the influence of individ-
ual Zernike aberrations of the phase on the evolution
of the intensity distribution in the wave front near a
uniformly illuminated circular aperture, making phase
retrieval extremely straightforward. The derived opera-
tor solution (48) to the Neumann boundary problem for
the TIE and its matrix representation (61) give a unique
phase ¢ ) € Zy) for any given wave-front curvature in-
side the aperture fiv-2 € Zw-2 and the boundary slope
Yoy € Favy. In practice, ¢ 1s obtained as a sum of
two orthogonal components ¢ o) and ¢, the first
containing all diagonal Zernike aberrations of the phase
and the second contalnlng all the nondiagonal ones. The
component qS N) depends only on the wave-front curva-
ture inside the aperture. The diagonal component ¢y,
depends on the wave-front slope at the boundary as well
as on the boundary values of ¢>(N We have also derived
explicit analytical expressmns [Egs. (67)-(60)] for the
phase retrieval matrix Ay! corresponding to the operator
solution (48) and presented a numerical example of such
a matrix for N = 4. The phase ¢w) € Zw) can be re-
trieved by the direct multiplication of the matrix Ayt with
the vector g = {dav), f(v-2)} of the Fourier coefficients of
boundary slopes and the Zernike coefficients of the wave-
front curvature. The matrix Ay’ does not depend on
the experimental data and so needs to be calculated only
once for a given N. Thus there is the prospect of a very
rapid and precise phase retrieval algorithm with this ap-
proach. We are planning to present results of computer
simulations with this algorithm in a subsequent paper.

APPENDIX A

Here we prove that the kernel of the Laplacian in the
Zernike space Zy coincides with the subspace DZy

Gureyev et al.

spanned by the diagonal Zernike polynomials, i.e.,
Ker[(—A)y]=DZy. Itwasshown in Subsection 3.B that
AZ; = 0 for any diagonal polynomial, so Ker[(—A)y] D
DZy. Hence it is sufficient to prove the opposite inclu-
sion,

Ker[(—A)y] C DZy, (A1)

i.e., that any function g from Zy, such that A¢ = 0, can
be expressed as a linear combination of diagonal Zernike

polynomials. Let us consider an arbitrary function ¢
from Zy:
b= > ¢;Z; —Z Zr"[qﬁ sin(m@) + ¢/, cos(m8)],
j€In
(A2)

where the first sum is over n = N and the second is over
such m that n — m is positive and even. Then
—Agp = Z Z(m —nAr e,

sin(m#) + ¢}, cos(mb)].

(A3)

All the monomials 7”72 sin(m#) and 7" 2 cos(m#) in
Eq. (A3) are linearly independent, so A¢ = 0 if and only
if all the coefficients in Eq. (A3) are equal to zero:

(m* — n®¢,, = 0. (A4)

nm

(m* = n®)¢},, =0,

But Egs. (A4) imply that all coefficients ¢,,, and ¢/, with
n # m must be equal to zero, so in the expansion (A2) only
diagonal coefficients ¢,,,, and ¢,,,, may be nonzero, i.e.,
the function ¢ belongs to the diagonal subspace DZy and
relation (Al) is proved.

APPENDIX B

Here we prove that the Laplacian maps the Zernike space
Zy into the space Zy_o, i.e.,

Im[(—A)y] C Zy—». (B1)

In other words, we must prove that for any function ¢
from Zy its Laplacian A¢ can be represented as a lin-
ear combination of some Zernike polynomials with radial
degrees not exceeding N — 2. As A¢ can be expressed
by formula (A3), it is sufficient to prove that each mono-
mial r*~2 sin(mé) and 7”2 cos(m#) in Eq. (A3) belongs to
Zy_o. Importantly, m = (n — 2) for all terms in Eq. (A3),
because the terms with m = n from Eq. (A2) are mapped
by the Laplacian into zero. We consider only monomials
with sin (the proof for the monomials with cos is iden-
tical). Thus we are going to prove that any monomial
r! sin(m@), with I = n — 2, I — m nonnegative and even,
belongs to Zy 5. It is then sufficient to prove that for any
m = N — 2 the radial monomial !, [ =m + 2k, [ = N — 2,
can be represented as a linear combination

= > o,R™r) (B2)
n=l

of radial Zernike polynomials with fixed m. We will
prove it by induction by k. For 2 = 0 we have [ = m
and Eq. (B2) is obvious, as r™ = R]® [see Eq. (16)]. Let
us assume that we have proved Eq. (B2) for [ = m +
2(k — 1) and then prove it for [ = m + 2k. Using the
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definition (16) of Zernike polynomials, we can write

k
- 0
rm+2k = |:Rr':z+2k - Zl 778n+2k,mrm+2(k S):|/7m+2k,m . (BS)
5=

But by the induction assumption all monomials under the
summation sign in Eq. (B3) can be represented in the
form (B2) [as their indices do not exceed m + 2(k — 1)],
and R, 5, obviously has the form (B2) with m + 2k =1 <
N — 2. Therefore r™2* can be represented as the linear
combination (B2), and hence Eq. (B1) is proved.
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