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Phase retrieval with the transport-of-intensity equation:
matrix solution with use of Zernike polynomials

T. E. Gureyev, A. Roberts, and K. A. Nugent

School of Physics, The University of Melbourne, Parkville, Victoria 3052, Australia

Received October 3, 1994; revised manuscript received January 11, 1995; accepted March 29, 1995

A new technique is proposed for the recovery of optical phase from intensity information. The method is
based on the decomposition of the transport-of-intensity equation into a series of Zernike polynomials. An
explicit matrix formula is derived, expressing the Zernike coefficients of the phase as functions of the Zernike
coefficients of the wave-front curvature inside the aperture and the Fourier coefficients of the wave-front
boundary slopes. Analytical expressions are given, as well as a numerical example of the corresponding phase
retrieval matrix. This work lays the basis for an effective algorithm for fast and accurate phase retrieval.
1. INTRODUCTION
The problem of phase retrieval from intensity informa-
tion is of relevance in many areas of science.1,2 In this
paper we consider the phase retrieval technique based on
the transport-of-intensity equation (TIE) first proposed by
Teague.3,4 We are motivated to investigate this problem
as the TIE has been studied in the context of adaptive op-
tics for astronomy 5,6 and the imaging of phase objects in
microscopy.7 Related problems have also benefited from
the sorts of approach described here, such as determina-
tion of the aberrations of the eye in ophthalmology,8 cor-
recting optics for x-ray sources,9 and the investigation of
aberrations in large optical telescopes.10

In this paper we are concerned not with the nature
of a specific application but rather with the detailed
mathematical basis for the solution of the TIE. We
concentrate here on solutions in terms of the Zernike
polynomials,11 as these are the natural starting point
for the discussion of the diffraction theory of aberrations
and so are widely used in adaptive optics and other opti-
cal studies.12 – 19 Although the details of our discussion
revolve around these polynomials, it is no doubt also pos-
sible to develop closely related approaches with the use of
other orthonormal polynomials, which may be useful in
specific applications.

The TIE is a partial differential equation that directly
relates the phase distribution in the planes orthogonal
to the optical axis to the rate of change of the wave-
front intensity of the beam. The equation forms the ba-
sis of the now widely used wave-front curvature sensing
technique proposed by Roddier and Roddier.5,6,10 Here
we suggest a new approach based on Zernike decompo-
sition of the TIE that we hope will allow phase to be
sensed with improved speed and resolution. We propose
to expand each function involved in the TIE into a se-
ries of Zernike polynomials, thus reducing the boundary-
value problem for the TIE to a system of linear algebraic
equations. Such an approach is effective in the case of
circular apertures with uniform illumination, to which we
confine our present study. The analysis of the structure
of the resulting algebraic system significantly clarifies
the contribution of each particular phase aberration to
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the propagation of the wave-front intensity distribution
in the beam. Furthermore, the reduction of the TIE to
a system of linear equations allows simple and efficient
methods for its solution. Some facts about the algebraic
properties of the TIE with respect to Zernike polynomials
have been reported earlier.10 – 19 We give rigorous proofs
for the relevant results, derive some new ones, and bring
them together to present a complete picture of the struc-
ture of the TIE with respect to individual Zernike aber-
rations of the phase.

Our study is based on the calculation of the Laplacian
of Zernike polynomials. These results can be considered
as a logical extension of the work by Noll,13 who calculated
the first-order partial derivatives of Zernike polynomials.
We prove that the only Zernike polynomials with zero
Laplacian are the diagonal ones, i.e., those with radial
degree equal to the azimuthal frequency. We also prove
that the Laplacian of any nondiagonal Zernike polynomial
of radial degree N can be represented as a linear combi-
nation of Zernike polynomials each with radial degree not
exceeding N 2 2. Using these results, we derive an ex-
plicit operator formula for the phase solution to the TIE
as a function of Zernike coefficients of the wave-front cur-
vature inside the aperture and the Fourier coefficients of
the wave-front slopes at the boundary. It turns out that,
on account of the stability of the solution to the Neumann
problem for the Poisson equation, this phase solution is
insensitive to small errors in the data of the wave-front
curvature and boundary slopes. Furthermore, the coef-
ficients of the inverse operator do not depend on the ex-
perimental data. Therefore we believe that our approach
lays the basis for a very efficient algorithm for phase re-
trieval by the TIE method.

In Section 2 we review the basics of the phase recon-
struction with the TIE. In Section 3 we develop our new
approach, and we discuss the results in Section 4.

2. TRANSPORT-OF-INTENSITY EQUATION
AND PHASE RETRIEVAL
The underlying idea of phase retrieval with the use of
the TIE is that in the paraxial approximation the evolu-
tion of the intensity distribution in the direction of beam
 1995 Optical Society of America
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propagation is defined mainly by the distribution of the
phase in the planes orthogonal to that direction. There-
fore these phase distributions can be recovered if the
intensity change from one such plane to another is mea-
sured. In this section we recall the basics of the intensity
transport method, as suggested by Teague3,4 and Roddier
and Roddier.5,6,10

Let us consider the scalar monochromatic electromag-
netic wave with complex amplitude

expsikzdusrd ­ I 1/2srdexpfikz 1 ifsrdg , (1)

where r ­ sx, y, zd. In the paraxial (Fresnel) approxi-
mation with the optical axis parallel to z, the complex
amplitude usrd satisfies the paraxial equation

s2ik≠z 1 Ddusx, y, zd ­ 0 , (2)

where k is the wave number, ≠z ­ ≠y≠z, and D ­ =2 ­
≠x

2 1 ≠y
2 is the two-dimensional Laplacian. If we substi-

tute Eq. (1) into Eq. (2) and separate real and imaginary
parts, we obtain the following pair of equations [provided
that I srd fi 0]:

2k≠zf ­ 2j=fj2 1 DsI d , (3)

k≠zI ­ 2=I ? =f 2 IDf , (4)

where = ­ s≠x, ≠y d is the gradient operator in a plane and
DsI d ­ I21/2DsI1/2d is the diffraction term. Equation (4)
is the TIE. It can be used for the reconstruction of the
phase in some area V of a plane sx, yd, z ­ constant,
if the distributions of intensity and its z derivative are
known there.

In this work we will consider only circular domains V,
where R is the radius and G is the boundary of V. It is
convenient to introduce the polar coordinates sr, ud in the
plane of interest, z ­ 0. We also restrict our study to the
case of uniform intensity distributions in V:

I sr, ud ­ I0H sR 2 rd, I0 ­ constant ,

H std ­

(
1 t . 0
0 t # 0

. (5)

The assumption of uniform intensity is widely accepted
in adaptive optics.5,6,20 Substituting Eqs. (5) into Eq. (4),
we obtain

2H sR 2 rdDfsr, ud 1 dsR 2 rd≠rfsR, ud

­ kI0
21≠zI sr, ud , (6)

where dsrd is the Dirac delta function and ≠rf is the
phase derivative along the radial direction. Equation (6)
implies that the z derivative of intensity must also contain
a delta-function term at the boundary:

kI0
21≠zI sr, ud ­ f sr, ud 1 dsR 2 rdcsud , (7)

where the function f is smooth up to the boundary and
c is a smooth function on the boundary G. Comparing
Eqs. (6) and (7), we find that

2Df ­ f (8)

inside the circular domain V and that

≠rf ­ c (9)

on the boundary G.
Thus, in the case of uniform intensity, the phase can
be obtained as a solution to the Neumann boundary-value
problem (9) for the Poisson equation (8). This approach
was developed by Roddier5,6 and has an important advan-
tage over the original suggestion of Teague,3,4 who consid-
ered the Dirichlet boundary conditions f ­ c̃ on G. The
advantage of boundary conditions (9) is in the fact that,
unlike the phase itself, the phase normal derivative at
the boundary can be found from intensity measurements
(7) at this boundary. Hence direct measurements of the
phase boundary values are not necessary.

When one studies a boundary problem for a partial
differential equation, it is always necessary to address
three major questions, namely, those concerning exis-
tence, uniqueness, and stability of solutions. Because
the Neumann problem [Eqs. (8) and (9)] is a classi-
cal object of mathematical physics, its properties are
well known.

It is proved in the theory of partial differential equa-
tions that a solution to the problem of Eqs. (8) and (9)
exists if and only if the following condition holds21:ZZ

V

f sr, udr drdu 1
Z

G

csudR du ­ 0 . (10)

When we substitute for f and c, Eq. (10) becomes

k
Z 2p

0

Z R

0
≠zI sr, udr drdu ­ 2I0R

Z 2p

0
≠rfsR, uddu ,

(11)

which is just an expression of conservation of energy; loss
of intensity in a region arises through energy flow across
the boundary of the region. Equation (10) may be used
to check the consistency of acquired intensity data.

The mathematical theory also states21 that the solution
of Eqs. (8) and (9) is unique up to a constant, i.e., if f is
a solution, then f 1 C is also a solution for any constant
C. This arbitrary additive constant is not essential for
the phase reconstruction. A nontrivial fact is that in the
case of uniform intensity (5) and circular domain V the
phase reconstructed by Eqs. (8) and (9) is unique (up
to a constant) even in the class of multivalued phase
functions.22 This is important in view of the example
given by Gori et al.,23 which presents essentially different
(multivalued) phase functions corresponding to the same
(nonuniform) three-dimensional intensity distribution in
a wave field.

Finally, we would like to recall that the solution
f to Eqs. (8) and (9) is stable with respect to small
errors in f or c, as a result of the boundedness of the
inverse operator.21,24 Namely, if f and f0 are the solu-
tions to Eqs. (8) and (9) with the right-hand-side functions
sf , cd and sf 0, c 0d, respectively, with dVsf , f 0d , d1 and
dGsc, c 0d , d2, where dV and dG are the appropriate met-
rics inside V and on the boundary G, respectively, then
dVsf, f0d , e and e ­ esd1, d2d ! 0 when d1 1 d2 ! 0.

Note that, in the approach described above, the
boundary values of the phase normal derivative csud ­
≠rfsR, ud should be obtained as the coefficient of the
delta function in Eq. (7). In reality, the intensity change
near the boundary always has a finite gradient. If the
intensity is almost uniform in the interior of V and has a
sharp decrease near the boundary, then at the boundary
the first term on the right-hand side of Eq. (4) is much
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larger than the second one, which allows us to write

csud > 2k
≠zI sR, ud
≠rI sR, ud

. (12)

Inside V the first term on the right-hand side of Eq. (4)
is much smaller than the second one, which gives us the
expression for f :

f sr, ud > kI0
21≠zI sr, ud, r , R . (13)

Thus we have a well-defined boundary-value problem
[Eqs. (8) and (9)] with the right-hand-side functions f and
c obtainable from the measurements of optical intensity
in two closely spaced planes (we need to measure inten-
sity in two planes in order to calculate the derivative ≠zI ).
We now proceed with the solution of Eqs. (8) and (9) by
the method of orthogonal expansions.

3. TRANSPORT-OF-INTENSITY EQUATION
AND ORTHOGONAL POLYNOMIALS

A. Expansion of the Transport-of-Intensity
Equation into Orthogonal Polynomials
In this subsection we briefly outline the scheme of the
orthogonal expansion method of solution of boundary-
value problems for partial differential equations. In the
following subsections we will apply it to the TIE using
Zernike polynomials, though it is possible to implement
this method with any complete set of orthogonal func-
tions. In particular, it may be interesting to consider
the eigenfunctions of the Laplacian in the circle. Our
choice of Zernike polynomials is motivated by their favor-
able properties with respect to the description of phase
aberrations.11 – 14

Let hZj j be a complete set of linearly independent func-
tions in domain V, so that we can expand the phase
f and the wave-front curvature f into a series over Zj :
f ­

P
fjZj , f ­

P
fj Zj . Substituting these into the

Poisson equation (8) and using the linearity of the Laplace
operator, we obtain the system of linear algebraic equa-
tions

P
Lij fj ­ fi, where the matrix elements Lij are

the coefficients of the decomposition of 2DZj over Zi:
s2DdZj ­

P
Lij Zi. If the system hZj j is orthonormal

with respect to some scalar product, kZi, Zj l ­ dij , where
dij is the Kronecker symbol, then Lij ­ k2DZj , Zil. If
the matrix fLij g is singular, i.e., if it maps some of
the Zj or their linear combinations into zero, then the
phase f should be expressed as a sum of two components
(projections), f ­ fs0d 1 fs1d, where fs0d is the projection
of f onto the subspace Kers2Dd spanned by all linear com-
binations of Zj mapped by the Laplacian into zero, and
fs1d ­ f 2 fs0d is the projection onto the complementary
subspace fKers2Ddg'.

By definition s2Ddfs0d ­ 0; hence fs0d cannot be found
from the above system, because

P
Lij fj ­

P
Lij f

s1d
j ­ fi

does not depend on fs0d. However, if the boundary prob-
lem is well posed,21 fs0d can be uniquely found from the
boundary conditions. The matrix fLij g is always non-
singular (invertible) on the subspace fKers2Ddg'; hence
the component fs1d can be obtained by the inversion of this
matrix: f

s1d
j ­

P
Lji

21fi. Thus the phase can be re-
constructed as a sum of two components, f ­ fs0d 1

fs1d, with the component fs1d obtained from the wave-
front curvature and the component fs0d determined from
boundary conditions.

In practice, we must deal with truncated series, which
is equivalent to considering finite-dimensional subspaces
spanned by subsets of the whole system hZj j. In what
follows, we define such natural subsets and implement
the method of orthogonal expansions with the system of
Zernike polynomials.

B. Zernike Decomposition of the Laplacian
In this subsection we derive the decomposition of the
Laplacian in the spaces ZN of Zernike polynomials with
radial degree not exceeding some integer N. The main
aim is to find the kernel (the polynomials mapped into
zero) and the image (the functions into which Zernike
polynomials are mapped) of the Laplacian in ZN . Such
an analysis is a necessary preliminary step for the phase
reconstruction by the Zernike expansion of the TIE, which
we describe in Subsection 3.C. Examples of the sub-
spaces that we introduce in this subsection can be found
in Table 1.

We recall the definition of Zernike polynomials using a
notation differing from that of Noll13 only by normaliza-
tion constants:

Zj sr, ud ­

8>><>>:
cm

n Rm
n srdcossmud j even, m fi 0

cm
n Rm

n srdsinsmud j odd, m fi 0
c0

nR0
nsrd m ­ 0

, (14)

where 0 # r # 1 and 0 # u # 2p,

cm
n ­ fs2 2 dm0dsn 1 1dypg1/2 (15)

are normalization constants (the factor
p

p in the denomi-
nator is the only difference from the notation of Noll13),

Rm
n srd ­

sn2md/2X
s­0

gs
n,mrn22s ,

gs
n,m ­

s21dssn 2 sd!
s! fsn 1 mdy2 2 sg! fsn 2 mdy2 2 sg!

(16)

are the radial Zernike polynomials, and n and m must
be positive integers satisfying m # n, n 2 m even. The
index m is the azimuthal frequency of a given Zernike
polynomial, and n is its radial degree. The number j is
a convenient mode-ordering index; it may be verified that
in the ordering of Noll13 each valid pair of indices sm, nd,
m fi 0, corresponds to the pair of consecutive integer
numbers sj , j 1 1d, where

j ­ jsm, nd ­
nsn 1 1d

2
1 m , (17)

whereas each pair s0, nd corresponds to only one num-
ber j 1 1, j ­ js0, nd from Eq. (17) (see Table 1). Impor-
tantly, this ordering has no gaps; i.e., if we consider the
set of all Zernike polynomials with radial degree not ex-
ceeding some integer N, their j indices will constitute the
set JN ­ h1, 2, . . . , jN j of all consecutive integers from 1
to jN , where

jN ­ jsN , Nd 1 1 ­ sN 1 1dsN 1 2dy2 . (18)

The choice (15) of normalization constants makes the sys-
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tem of Zernike polynomials orthonormal with respect to
the standard scalar product:

kZi, Zj l ­
Z 2p

0

Z 1

0
Zisr, udZj sr, udr drdu ­ dij . (19)

Let us introduce the vector space ZN of all linear com-
binations of Zernike polynomials with radial degrees not
exceeding an integer N:

ZN ­

8<: P
j[JN

aj Zj , aj real numbers

9=; (20)

(see the example for N ­ 5 in Table 1). It follows from
Eqs. (18)–(20) that the dimension dimsZN d of the space
ZN is equal to jN : dimsZN d ­ sN 1 1dsN 1 2dy2.

We will also need the subspace DZN spanned by all
diagonal polynomials from ZN :

DZN ­
nP

aj Zj : Zj [ ZN , m ­ n
o

(21)

(see Table 1). Obviously, dimsDZN d ­ 2N 1 1, as there
are two diagonal Zernike polynomials cn

nrn sinsnud and
cn

nrn cossnud for each radial degree n fi 0 and one diagonal
polynomial of zero degree, Z0 ­ c0

0 ­ p21/2. Note the
important equality

dimsZN d 2 dimsDZN d ­ dimsZN22d , (22)

which follows directly from the formulas for the dimen-
sions presented above: sN 1 1dsN 1 2dy2 2 s2N 1 1d ­
sN 2 1dNy2.

Let us consider the restriction s2DdN of the Laplacian
to the finite-dimensional space ZN . One can easily verify
that the polynomial s2DdZj has the same form as that of
Zj [see Eqs. (14)–(16)], with different radial components
R̃m

n srd in place of Rm
n srd:

R̃m
n srd ­

sn2md/2P
s­0

g̃s
n,mrn22s22 ,

g̃s
m,n ­ gs

m,nfm2 2 sn 2 2sd2g . (23)

We denote by Kerfs2DdN g the kernel of the operator
s2DdN , i.e., the set of all functions f [ ZN mapped by
s2DdN into zero. We state that the kernel of s2DdN co-
incides with the space spanned by the diagonal Zernike
polynomials:

Kerfs2DdN g ­ DZN . (24)

In other words, the Laplacian of a linear combination of
Zernike polynomials is equal to zero if and only if this lin-
ear combination contains only the diagonal polynomials.
It is easy to see from Eq. (23) that DZj ­ 0 for any diag-
onal polynomial, which implies that Kerfs2DdN g . DZN .
The opposite inclusion, i.e., the fact that any function f

from ZN , such that Df ­ 0, can be expressed as a lin-
ear combination of diagonal Zernike polynomials, is less
obvious and is proved in Appendix A.

Now consider the image space Imfs2DdN g of the opera-
tor s2DdN , i.e., the set into which ZN is mapped by the
Laplacian: Imfs2DdN g ­ s2DdZN . We state that the im-
age of s2DdN coincides with the space spanned by the
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Zernike polynomials with radial degrees not exceeding
N 2 2:

Imfs2DdN g ­ ZN22 . (25)

In other words, a function is equal to the Laplacian of a
linear combination of Zernike polynomials with radial de-
grees not exceeding N if and only if it can be expressed
as a linear combination of Zernike polynomials with ra-
dial degrees not exceeding N 2 2. To prove Eq. (25), we
note, first, that according to Eq. (23) the Laplacian de-
creases the radial degree of any Zernike polynomial by 2.
It indicates that Imfs2DdN g , ZN22. A rigorous proof of
this inclusion is given in Appendix B. Second, the di-
mension of the image space of any linear operator is al-
ways equal to the difference between the dimension of the
whole space, where it is defined, and the dimension of its
kernel. In the case of s2DdN we have

dim hImfs2DdN gj ­ dimsZN d 2 dimhKerfs2DdN gj

­ dimsZN d 2 dimsDZN d ­ dimsZN22d ,
(26)

where we used formulas (22) and (24). Thus we see that
the image of s2DdN is a subspace of ZN22, and its dimen-
sion is equal to the dimension of ZN22. Therefore the
vector subspace Imfs2DdN g is equal to the whole vector
space ZN22, and Eq. (25) is proved.

Let us denote by UZN the subspace of ZN spanned
by all nondiagonal polynomials (see Table 1). Because of
the orthogonality relations (19), any function f from ZN

can be uniquely represented as a sum of two orthogonal
components:

f ­ fs0d 1 fs1d, fs0d [ DZN , fs1d [ UZN . (27)

In other words, we have the decomposition of the
space ZN into an orthogonal sum of two subspaces:
ZN ­ DZN © U ZN , where © denotes the orthogonal sum.
Formulas (24) and (25) give us the corresponding decom-
position of the Laplacian:

s2DdNZN ­

"
0 0
0 2D

#√
DZN

UZN

!
­

√
0

ZN22

!
,

or s2DdN

0B@f
s0d
sN d

f
s1d
sN d

1CA ­

√
0

fsN22d

!
, (28)

i.e., operator s2DdN maps the diagonal subspace DZN into
zero, and it maps UZN one to one (bijective) on ZN22.
Hence the restriction of the Laplacian to the subspace of
nondiagonal Zernike polynomials is invertible, and corre-
sponding components of the phase can be uniquely found
from the wave-front curvature. On the other hand, the
diagonal component f

s0d
sN d cannot be obtained from the

Poisson equation, and we will need to use the bound-
ary conditions (9) for its determination. The actual al-
gorithm is described in Subsection 3.C.

C. Zernike Decomposition of the Neumann
Problem [Eqs. (8) and (9)] and Its Solution
In this subsection we will use the representation (28) of
the Laplacian and the Neumann boundary condition (9) to
derive an algorithm for the unique reconstruction of the
phase f from the wave-front curvature f and the boundary
slope c.

Suppose that the wave-front curvature f obtained
from intensity measurements is approximated by a fi-
nite Zernike sum fsN 0d [ ZN 0 with some integer N 0 (we
have explained in Section 2 that the phase solution is
stable with respect to small errors in f that may occur as
a result of this approximation). We will be looking for a
phase f such that 2Df ­ fsN 0d. Let N ­ N 0 1 2. Then
fsN 0d ­ fsN22d [ ZN22, and, according to Eq. (28), we must
look for the corresponding phase solution in the space
ZN , i.e., find the coefficients fj in the representation
fsN dsRr, ud ­

P
j[JN fj Zj sr, ud, where r ­ ryR.

We start with the decomposition of the function fsN d [
ZN in accordance with Eq. (28):

fsN d ­ f
s0d
sN d 1 f

s1d
sN d, f

s0d
sN d ­

P
j[DJN

fjZj ,

f
s1d
sN d ­

P
j[UJN

fjZj , (29)

where the set DJN contains all indices j from JN ­
h1, 2, . . . , jN j corresponding to the diagonal polynomials
Zj and the complementary subset UJN ­ JNn DJN con-
tains all indices corresponding to nondiagonal ones. Ac-
cording to the results of Subsection 3.B, we should be
able to retrieve the nondiagonal component f

s1d
sN d from the

wave-front curvature fsN22d using the Poisson equation.
Let us decompose fsN22d into the Zernike terms,

fsN22dsRr, ud ­
P

i[JN22

fiZisr, ud , (30)

and use Eq. (28) to obtainP
i[JN22

fiZi ­ fsN22d ­ s2DdN f
s1d
sN d ­ s2DdN

P
j[UJN

fjZj

­ R22
P

i[JN22

P
j[UJN

fjLij Zi . (31)

Here Lij ­ k2DZj , Zil for all i [ JN22, j [ UJN , with
the scalar product k?, ?l defined in Eq. (19). Note that,
on account of the equality (22) and the definition of the
set UJN , the matrix fLij g is square with both dimensions
equal to jN22 ­ N sN 2 1dy2. It is also invertible (non-
singular) because of Eq. (28). As the Zernike polynomi-
als Zj are linearly independent, all coefficients at Zi in
Eq. (31) with the same indices must be equal, which gives
us the following system of linear algebraic equations:P

j[UJN

Lij fj ­ R2fi, i [ JN22 . (32)

Solving Eq. (32) for fj , we obtain

fj ­ R2
P

i[JN22

L
21
ji fi, j [ UJN , (33)

where fL21
ji g ­ fLij g21 is the inverse matrix [it represents

the operator s2Dd21
N : ZN22 ! UZN ].

Thus we have retrieved the nondiagonal component
f

s1d
sN d of the phase using Eq. (33), and it remains for us

to find the diagonal component f
s0d
sN d. We will use the

boundary condition (9) for this purpose. As fsN d belongs
to the space ZN , it contains circular harmonics of the or-
ders m # N . Consequently, its normal derivative at the
boundary, ≠rfsN dsR, ud, belongs to the space FN spanned
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by all circular harmonics with azimuthal frequencies not
exceeding N:

FN ­

(
hsud: hsud ­ h0 1

NP
m­1

fh0
m sinsmud

1 h00
m cossmudg

)
. (34)

We assume that the boundary wave-front slope c obtained
from the intensity measurements is approximated by a
finite Fourier sum csN d [ FN :

csN dsud ­ c0 1
NP

m­1
fc 0

m sinsmud 1 c 00
m cossmudg . (35)

Then we can write the boundary condition (9) as

≠rfsN dsR, ud ­ csN dsud . (36)

Obviously, ≠rfsN dsR, ud ­ ≠rf
s0d
sN dsR, ud 1 ≠rf

s1d
sN dsR, ud, and

we can calculate the derivative ≠rfs1d
sN d

sR, ud, as the fs1d
sN d

component is already found. Let us introduce the new
function c̃sN dsud ­ csN dsud 2 ≠rf

s1d
sN dsR, ud and decompose

it into the circular harmonics:

c̃sN dsud ­ c̃0 1
NP

m­1
fc̃ 0

m sinsmud 1 c̃ 00
m cossmudg . (37)

On the other hand, by its definition f
s0d
sN d is a linear com-

bination of diagonal Zernike polynomials:

f
s0d
sN dsRr, ud ­ c0

0f0 1
NP

m­1
cm

mrmff0
m sinsmud

1 f00
m cossmudg ; (38)

hence its radial derivative can be written as

≠rf
s0d
sN dsR, ud ­ R21

NP
m­1

cm
mmff0

m sinsmud 1 f00
m cossmudg .

(39)

Finally, as ≠rf
s0d
sN dsR, ud ­ c̃sN dsud, we obtain from Eqs. (37)

and (39) the following equations for the diagonal coeffi-
cients of the phase:

f0
m ­

Rc̃ 0
m

mcm
m

, f00
m ­

Rc̃ 00
m

mcm
m

, m ­ 1, 2, . . . , N . (40)

Formula (40) gives us the values of Zernike coefficients
of the diagonal phase component f

s0d
sN d, except the zero

coefficient f0. Applying formula (17) with m ­ n, we
derive that each integer m in Eq. (40) corresponds to a
pair of j indices sj , j 1 1d ­ fmsm 1 3dy2, msm 1 3dy2 1 1g
of a pair of diagonal polynomials. Hence, when m runs
through the sequence 1, 2, . . . , N , these pairs sj , j 1 1d
exhaust the whole set DJN , except the zero-order Zernike
polynomial [note that m starts from unity in Eqs. (39)
and (40)].

The last exception has two important consequences.
First, the impossibility of determining the coefficient f0

means that we can reconstruct the phase only up to an
arbitrary additive constant. This, however, is a well-
known general property of the Neumann problem already
discussed in Section 2. Second, boundary conditions (36)
cannot be valid [i.e., Eq. (37) cannot be equal to Eq. (39)],
unless c̃0 ­ 0 in Eq. (37). By the conventional formula
for the Fourier coefficients we have the equality

c̃0 ­
1

2p

Z 2p

0
fcsN dsud 2 ≠rf

s1d
sN dsR, udgdu ­ 0 . (41)

Applying Green’s theorem to Eq. (41), we obtain

Z 2p

0
csN dsuddu ­ 2R

Z 2p

0

Z 1

0
fsN22dsRr, udrdrdu . (42)

If we substitute the Fourier expansion (35) for csN d and
the Zernike expansion (30) for fsN22d into Eq. (42), we see
that the integrals of all the components, except the zero-
order ones, are equal to zero because of the orthogonality
of the system of circular harmonics and Zernike polyno-
mials. Thus condition (42) is equivalent to

c0 ­ 2
R

2
p

p
f0 , (43)

where c0 is the zero-order Fourier coefficient of c and f0

is the zero-order Zernike coefficient of f. We can also ob-
tain Eq. (43) from the energy-conservation law, substitut-
ing the Fourier expansion for c and the Zernike expansion
for f in Eq. (10). Therefore Eq. (43) and hence Eq. (41)
are always true.

Thus our reconstruction algorithm allows the unique
retrieval by means of formulas (33) and (40) of all phase
aberrations with radial degree not exceeding N, except
the piston mode. In Subsection 3.D we will derive an
explicit matrix formula corresponding to this algorithm,
which expresses the reconstructed phase as a function
of Zernike coefficients of the wave-front curvature f and
Fourier coefficients of the boundary slope c.

D. Phase Retrieval Matrix
We consider the operator AN defined by the Laplacian and
the Neumann boundary condition in the space ZN , AN ­
hs2DdN , BN j, with sBfdsud ­ ≠rfsR, ud, and write the ana-
log of decomposition (28) for it:

AN ZN ­

"
B B
0 2D

#√
DZN

UZN

!
­

√
FN

ZN22

!
, (44)

or

AN

0B@f
s0d
sN d

f
s1d
sN d

1CA ­

24B s0d
sN d B s1d

sN d

0 2DsN d

350B@f
s0d
sN d

f
s1d
sN d

1CA
­

0B@B s0d
sN df

s0d
sN d 1 B s1d

sN df
s1d
sN d

2Df
s1d
sN d

1CA ­

√
csN d

fsN22d

!
, (45)

where B s0d
sN d: DZN ! FN and B s1d

sN d: UZN ! FN are the
restrictions of the boundary operator sBfdsud ­ ≠rfsR, ud
to the corresponding subspaces. Let us also introduce
the spaces F̃sN d and DZ̃sN d obtained from FsN d and DZsN d,
respectively, by the removal of the zero-order (constant)
component and define the corresponding operators: B̃ s0d

sN d:
DZ̃N ! F̃N and B̃ s1d

sN d: UZN ! F̃N . We must remove the
zero-order component to make the operator AN invertible
according to Subsection 3.C. Let us rewrite Eq. (45) in



1938 J. Opt. Soc. Am. A/Vol. 12, No. 9 /September 1995 Gureyev et al.
the Zernike and Fourier spaces without constant compo-
nents:

ÃN

0B@f̃
s0d
sN d

f
s1d
sN d

1CA ­

24B̃ s0d
sN d B̃ s1d

sN d

0 2DsN d

350B@f̃
s0d
sN d

f
s1d
sN d

1CA
­

0B@B̃ s0d
sN df̃

s0d
sN d 1 B̃ s1d

sN df
s1d
sN d

2Df
s1d
sN d

1CA ­

√
c̃sN d

fsN22d

!
. (46)

Now one can easily find the inverse operator Ã21
N by ma-

trix algebra:

Ã21
N ­

24fB̃ s0d
sN dg21 2fB̃ s0d

sN dg21B̃ s1d
sN df2DsN dg21

0 f2DsN dg21

35 ,

Ã21
N

√
F̃N

ZN22

!
­

√
DZ̃N

UZN

!
, (47)

or0B@f̃
s0d
sN d

f
s1d
sN d

1CA ­ Ã21
N

√
c̃sN d

fsN22d

!

­

0@fB̃ s0d
sN dg21c̃sN d 2 fB̃ s0d

sN dg21B̃ s1d
sN df2DsN dg21fsN22d

f2DsN dg21fsN22d

1A .

(48)

Formula (48) is an operator representation of the recon-
struction algorithm described in Subsection 3.C. Each
term in Eq. (48) has already been defined. Operator
f2DsN dg21 is defined in Eq. (33). It is represented by
the matrix R2L

21
ji applied to the vector of Zernike coeffi-

cients of fsN22d. Operator fB̃ s0d
sN dg21 is defined in Eq. (40).

Its action on a function c̃sN d from F̃sN d is equivalent
to the multiplication of its Fourier coefficients c̃ 0

m, c̃ 00
m

by the constants Rymcm
m. Operator B̃ s1d

sN d is the restric-
tion of the boundary operator sBfdsud ­ ≠rfsR, ud, B̃ s1d

sN d:
UZN ! F̃N . The inversion (48) admits a generalization
onto the infinite-dimensional case,24 but we will not need
it in this paper.

Thus we have obtained the explicit formula (48) for the
operator Ã21

N , which maps each pair hcsN d, fsN22dj of the
wave-front curvature fsN22d [ ZN22 and boundary slope
csN d [ FN onto the unique (up to an additive constant)
phase solution f̃sN d ­ f̃

s0d
sN d 1 f

s1d
sN d [ Z̃N such that

2Df̃sN d ­ fsN22d and ≠rf̃sN dsR, ud ­ csN dsud. Formula
(48) is the central result of the present paper.

Now we will give the analytical form for the ma-
trix formulas (46)–(48) convenient for applications and
present a numerical example for N ­ 4. Let us start
from the matrix ÃN :

ÃN ­

"
A11 A12

0 A22

#
­

24R21B s0d
ij R21B s1d

ij

0 R22Lij

35 . (49)

In Eq. (49) A11 ­ R21B s0d
ij is a square 2N 3 2N matrix,

and A12 ­ R21B s1d
ij is a rectangular 2N 3 sN 2 1dNy2

matrix with elements

R21Bij ­ kBZj , FilG ­ R21
Z 2p

0
s≠rZj ds1, udFisuddu , (50)
where

Fi ­

8>>>>><>>>>>:
c cos

√
i
2

u

!
i even

c sin

√
i 1 1

2
u

!
i odd

, c ­ 1y
p

p , (51)

where i ­ 1, 2, . . . , 2N, j [ DJNnh1j for B s0d
ij , and j [ UJN

for B s1d
ij . Using Eq. (50) and the definition (14)–(16) of

the Zernike polynomials, we obtain

R21B s0d
ij ­ R21mcm

mdik ,

i ­ 1, 2, . . . , 2N, j [ DJNnh1j, m ­ msjd , (52)

R21B s1d
ij ­ R21sj dik , i ­ 1, 2, . . . , 2N , j [ UJN ,

(53)

k ­

(
2msjd 2 1 j odd
2msjd j even

, (54)

where sj ­ cm
n

Psn2md/2
s­0 gs

n,msn 2 2sd [see Eqs. (15) and (16)
for the definition of the coefficients cm

n and gs
n,m], dik is the

Kronecker symbol, and msj d is the azimuthal frequency
of Zj . The block A22 ­ R22Lij is the sN 2 1dNy2 3 sN 2

1dNy2 square matrix with elements

R22Lij ­ k2DZj , Zil

­
Z 2p

0

Z R

0
s2DdZj sryR, udZisryR, udr drdu , (55)

where i [ JN22 and j [ UJN . The following formula is
derived from the definition (14)–(16) of Zernike polyno-
mials and formula (23) for the Laplacian of Zernike poly-
nomials:

Lij ­ dmm0 2fsn 1 1dsn0 1 1dg1/2
sn02md/2X

s0­0

sn2md/2X
s­0

g
s0

n0,mgs
n,m

3
m2 2 sn 2 2sd2

n0 1 n 2 2s0 2 2s
, (56)

where i [ JN22, j [ UJN , j ­ j sm, nd, and i ­ jsm0, n0d,
as in Eq. (17), and the coefficients gs

n,m are defined in
Eq. (16). Note that although formulas (52), (53), and (56)
give explicit analytical expressions for the elements of
the matrix ÃsN d, it is sometimes more convenient to use
formulas (50) and (55) for the practical calculations. In
Table 2 we present an example of matrix ÃsN d for N ­ 4.

The inverse matrix Ã21
sN d consists of the blocks

Ã21
N ­

"
A21

11 A21
12

0 A21
22

#
­

24RfB s0d
ij g21 2R2fB s0d

ij g21B s1d
ij L

21
ji

0 R2L
21
ji

35 .

(57)

In Eq. (57) A21
11 is a square 2N 3 2N matrix, A21

12 is
a rectangular 2N 3 sN 2 1dNy2 matrix, and A21

22 is an
sN 2 1dNy2 3 sN 2 1dNy2 square matrix. In order to
obtain the elements of Ã21

sN d, one needs to find only the in-
verse matrices L

21
ji ­ sLij d21 and fB s0d

ij g21. The elements
of these inverse matrices can be easily calculated:



Gureyev et al. Vol. 12, No. 9 /September 1995 /J. Opt. Soc. Am. A 1939
Table 2. Matrix Ãs4dÃs4dÃs4d for R 5 1R 5 1R 5 1a

j

i 2 3 5 6 9 10 14 15 4 7 8 11 12 13

1 0 2 0 0 0 0 0 0 0 14
p

2 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 14

p
2 0 0 0

3 0 0 2
p

6 0 0 0 0 0 0 0 0 0 0 10
p

10
4 0 0 0 2

p
6 0 0 0 0 0 0 0 0 10

p
10 0

5 0 0 0 0 6
p

2 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 6

p
2 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 4
p

10 0 0 0 0 0 0
8 0 0 0 0 0 0 4

p
10 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 28
p

3 0 0 224
p

5 0 0
2 0 0 0 0 0 0 0 0 0 0 224

p
2 0 0 0

3 0 0 0 0 0 0 0 0 0 224
p

2 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 216

p
15 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 216
p

15
6 0 0 0 0 0 0 0 0 0 0 0 0 216

p
15 0

aThe rules separate the blocks Apq . The indexing system is described in the text [formulas (49) and (52)– (56)].
Table 3. Phase Retrieval Matrix Ã21
s4dÃ21
s4dÃ21
s4d for R 5 1R 5 1R 5 1a

i

j 1 2 3 4 5 6 7 8 1 2 3 4 5 6

2 0 1y2 0 0 0 0 0 0 0 7y24 0 0 0 0
3 1y2 0 0 0 0 0 0 0 0 0 7y24 0 0 0
5 0 0 1ys2

p
6 d 0 0 0 0 0 0 0 0 0 5y48 0

6 0 0 0 1ys2
p

6 d 0 0 0 0 0 0 0 0 0 5y48
9 0 0 0 0 1ys6

p
2 d 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1ys6
p

2 d 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 1ys4

p
10 d 0 0 0 0 0 0

15 0 0 0 0 0 0 1ys4
p

10 d 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 21ys8
p

3 d 0 0 1y16 0 0
7 0 0 0 0 0 0 0 0 0 0 21ys24

p
2 d 0 0 0

8 0 0 0 0 0 0 0 0 0 21ys24
p

2 d 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 21ys16

p
15 d 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 21ys16
p

15 d
13 0 0 0 0 0 0 0 0 0 0 0 0 21ys16

p
15 d 0

aThe rules separate the blocks A21
pq . The first 14 nonconstant Zernike aberrations s j ­ 2, 3, . . . , 15d of a phase can be retrieved by the application

of this matrix to the vector hcs4d, fs2dj of the Fourier coefficients of the boundary slope and the Zernike coefficients of the curvature of the wave front.
The indexing system is described in the text [formulas (57)– (60)].
sA21
11 dji ­ Rdikymcm

m,

i ­ 1, 2, . . . , 2N, j [ DJN nh1j, m ­ msjd , (58)

sA21
22 dji ­ R2s21di1j Mijydet L, i [ JN22, j [ UJN ,

(59)

where det L is the determinant of the sN 2 1dNy2 3 sN 2

1dNy2 matrix Lij with the elements defined in Eq. (56)
and Mij is the determinant of the matrix obtained from
Lij by removing the ith row and the jth column. Thus
we defined all the elements of the diagonal blocks A21

11

and A21
22 . The elements of the nondiagonal block A21

12

can now be obtained according to the rules of matrix
multiplication:

sA21
12 dji ­ 2R2

P
k

P
l

sA21
11 djkB s1d

kl sA21
22 dli ,

j [ DJN nh1j, i [ JN22 . (60)

Formulas (58)–(60) give explicit analytical expressions
for the elements of the matrix Ã21

N ; however, in practice,
it may be easier to obtain the whole matrix Ã21
sN d by the

matrix inversion of ÃsN d.
The phase fsN d [ ZsN d is retrieved by the direct mul-

tiplication of this matrix Ã21
N and the vector gsN d ­

hcsN d, fsN22dj of the Fourier coefficients of boundary slopes
c̃sN d [ F̃N and the Zernike coefficients of the wave-front
curvature fsN22d [ ZN22:0B@f̃

s0d
sN d

f
s1d
sN d

1CA ­ Ã21
N

√
c̃sN d

fsN22d

!
­

"
A21

11 A21
12

0 A21
22

#√
c̃sN d

fsN22d

!
. (61)

As can be seen from Eqs. (57)–(60), the phase retrieval
matrix Ã21

sN d does not depend on experimental data and
can be calculated for a given N once and for all with arbi-
trary precision. In fact, using algebraic, rather than nu-
merical, calculations with the help of such mathematical
software as, for example, MATHEMATICA, one can calculate
the matrix Ã21

sN d with absolute precision. We performed
this algebraic calculation for N ­ 4, with the result pre-
sented in Table 3.
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It is worth noting that the matrix in Table 3 is very
sparse and that the values of its nonzero elements are
decreasing as the matrix indices increase. This indi-
cates that the retrieval of phase with this matrix should
be quite stable. We still expect larger errors in the re-
trieval of the diagonal (with m ­ n) Zernike aberrations
compared with those arising from the nondiagonal terms
(with m fi n), because of the necessity to distinguish
the contribution of the wave-front boundary slopes from
that of the wave-front curvature. As can be seen from
Eq. (61), if the uncertainties in csN d are greater than the
uncertainties in fsN22d, then the uncertainty in the recon-
struction of the diagonal phase component f̃

s0d
sN d will also

be greater than that in the nondiagonal component f
s1d
sN d,

as the latter depends only on the wave-front curvature
fsN22d. A full discussion of the stability phase retrieval
with this approach is beyond the scope of the present
paper, and a thorough study of stability is currently
under way.

4. SUMMARY
In this paper we have examined the solution of the
transport-of-intensity equation (TIE) from the perspective
of a Zernike polynomial decomposition. We have found
a direct matrix relationship between a Zernike polyno-
mial decomposition of the intensity derivative and the
Zernike decomposition of the phase. This relationship
gives a precise description of the influence of individ-
ual Zernike aberrations of the phase on the evolution
of the intensity distribution in the wave front near a
uniformly illuminated circular aperture, making phase
retrieval extremely straightforward. The derived opera-
tor solution (48) to the Neumann boundary problem for
the TIE and its matrix representation (61) give a unique
phase fsN d [ ZsN d for any given wave-front curvature in-
side the aperture fsN22d [ ZsN22d and the boundary slope
csN d [ FsN d. In practice, fsN d is obtained as a sum of
two orthogonal components f

s0d
sN d and f

s1d
sN d, the first

containing all diagonal Zernike aberrations of the phase
and the second containing all the nondiagonal ones. The
component f

s1d
sN d depends only on the wave-front curva-

ture inside the aperture. The diagonal component f
s0d
sN d

depends on the wave-front slope at the boundary as well
as on the boundary values of f

s1d
sN d. We have also derived

explicit analytical expressions [Eqs. (57)–(60)] for the
phase retrieval matrix Ã21

N corresponding to the operator
solution (48) and presented a numerical example of such
a matrix for N ­ 4. The phase fsN d [ ZsN d can be re-
trieved by the direct multiplication of the matrix Ã21

N with
the vector gsN d ­ hc̃sN d, fsN22dj of the Fourier coefficients of
boundary slopes and the Zernike coefficients of the wave-
front curvature. The matrix Ã21

N does not depend on
the experimental data and so needs to be calculated only
once for a given N. Thus there is the prospect of a very
rapid and precise phase retrieval algorithm with this ap-
proach. We are planning to present results of computer
simulations with this algorithm in a subsequent paper.

APPENDIX A
Here we prove that the kernel of the Laplacian in the
Zernike space ZN coincides with the subspace DZN
spanned by the diagonal Zernike polynomials, i.e.,
Kerfs2DdN g ­ DZN . It was shown in Subsection 3.B that
DZj ­ 0 for any diagonal polynomial, so Kerfs2DdN g .
DZN . Hence it is sufficient to prove the opposite inclu-
sion,

Kerfs2DdN g , DZN , (A1)

i.e., that any function g from ZN , such that Df ­ 0, can
be expressed as a linear combination of diagonal Zernike
polynomials. Let us consider an arbitrary function f

from ZN :

f ­
P

j[JN

fj Zj ­
P
n

P
m

rnff0
nm sinsmud 1 f00

nm cossmudg ,

(A2)

where the first sum is over n # N and the second is over
such m that n 2 m is positive and even. Then

2Df ­
P
n

P
m

sm2 2 n2drn22ff0
nm sinsmud 1 f00

nm cossmudg .

(A3)

All the monomials rn22 sinsmud and rn22 cossmud in
Eq. (A3) are linearly independent, so Df ­ 0 if and only
if all the coefficients in Eq. (A3) are equal to zero:

sm2 2 n2df0
nm ­ 0, sm2 2 n2df00

nm ­ 0 . (A4)

But Eqs. (A4) imply that all coefficients f0
nm and f00

nm with
n fi m must be equal to zero, so in the expansion (A2), only
diagonal coefficients f0

mm and f00
mm may be nonzero, i.e.,

the function f belongs to the diagonal subspace DZN and
relation (A1) is proved.

APPENDIX B
Here we prove that the Laplacian maps the Zernike space
ZN into the space ZN22, i.e.,

Imfs2DdN g , ZN22 . (B1)

In other words, we must prove that for any function f

from ZN its Laplacian Df can be represented as a lin-
ear combination of some Zernike polynomials with radial
degrees not exceeding N 2 2. As Df can be expressed
by formula (A3), it is sufficient to prove that each mono-
mial rn22 sinsmud and rn22 cossmud in Eq. (A3) belongs to
ZN22. Importantly, m # sn 2 2d for all terms in Eq. (A3),
because the terms with m ­ n from Eq. (A2) are mapped
by the Laplacian into zero. We consider only monomials
with sin (the proof for the monomials with cos is iden-
tical). Thus we are going to prove that any monomial
rl sinsmud, with l # n 2 2, l 2 m nonnegative and even,
belongs to ZN22. It is then sufficient to prove that for any
m # N 2 2 the radial monomial rl, l ­ m 1 2k, l # N 2 2,
can be represented as a linear combination

rl ­
P

n#l
snRm

n srd (B2)

of radial Zernike polynomials with fixed m. We will
prove it by induction by k. For k ­ 0 we have l ­ m
and Eq. (B2) is obvious, as rm ­ Rm

m [see Eq. (16)]. Let
us assume that we have proved Eq. (B2) for l ­ m 1

2sk 2 1d and then prove it for l ­ m 1 2k. Using the
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definition (16) of Zernike polynomials, we can write

rm12k ­

24Rm
m12k 2

kP
s­1

g
s
m12k,mrm12sk2sd

35,
g

0
m12k,m . (B3)

But by the induction assumption all monomials under the
summation sign in Eq. (B3) can be represented in the
form (B2) [as their indices do not exceed m 1 2sk 2 1d],
and Rm

m12k obviously has the form (B2) with m 1 2k ­ l #

N 2 2. Therefore rm12k can be represented as the linear
combination (B2), and hence Eq. (B1) is proved.
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